21 research outputs found

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    T cell phenotypes in COVID-19 - a living review

    Get PDF
    COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation

    Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

    No full text
    The LHC at CERN is the largest and most powerful particle collider today. The Phase-II Upgrade of the LHC will increase the instantaneous luminosity by a factor of 7 leading to the High Luminosity LHC. At the High Luminosity-LHC, the number of proton-proton collisions in one bunch crossing (called pileup) increases significantly, putting more stringent requirements on the LHC detector electronics and real-time data processing capabilities. The ATLAS Liquid Argon calorimeter measures the energy of particles produced in LHC collisions. This calorimeter also feeds the ATLAS trigger to identify interesting events. In order to enhance the ATLAS detector physics discovery potential, in the blurred environment created by the pileup, an excellent resolution of the deposited energy and an accurate detection of the deposited time are crucial. The computation of the deposited energy will be performed in real-time using dedicated data acquisition electronic boards based on FPGAs. FPGAs are chosen for their capacity to treat large amounts of data with very low latency. The computation of the deposited energy is currently done using optimal filtering algorithms that assume a nominal pulse shape of the electronic signal. These filter algorithms are adapted to the LHC conditions with very limited pileup and no timing overlap of the electronic pulses in the detector. However, with the increased luminosity and pileup at HL-LHC, the performance of the filter algorithms decreases significantly and no further extension nor tuning of these algorithms could recover the lost performance. The off-detector electronic boards for the Phase-II Upgrade of the Liquid Argon calorimeter will use the next high-end generation of INTEL FPGAs with increased processing power and memory. This is a unique opportunity to develop the necessary tools, enabling the use of more complex algorithms on these boards. We developed several neural networks with significant performance improvements with respect to the optimal filtering algorithms. The main challenge is to efficiently implement these neural networks into the dedicated data acquisition electronics. Special effort was dedicated to minimising the needed computational power while optimising the neural networks architectures. Five neural network algorithms based on different architectures will be presented. The improvement of the energy resolution and the accuracy on the deposited time compared to the legacy filter algorithms, especially for overlapping pulses, will be discussed. The implementation of these networks in firmware will be shown. Two implementation categories in VHDL and Quartus High Level Synthesis code are considered. The implementation results on Stratix 10 INTEL FPGAs, including the resource usage, the latency, and operation frequency will be reported. Approximations for the firmware implementations, including the use of fixed-point precision arithmetic and lookup tables for activation functions, will be discussed. Implementations including time multiplexing to reduce resource usage will be presented. We will show that two of these neural networks implementations are viable solutions that fit the stringent data processing requirements on the latency (at the order of 100ns) and on the bandwidth (at the order of 1Tb/s per FPGA) needed for the ATLAS detector operation. The results of the tests of one of the neural networks on the hardware will be presented along with the test setup. This development is completely new and targets a technological breakthrough in the usage of neural networks implemented in readout electronic boards of particle physics detectors. We show that this goal is achievable for the High Luminosity-LHC upgrade. The results from this work are published in a special edition of the Computing and Software for Big Science journal

    Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters

    No full text
    International audienceThe ATLAS experiment at the Large Hadron Collider (LHC) is operated at CERN and measures proton–proton collisions at multi-TeV energies with a repetition frequency of 40 MHz. Within the phase-II upgrade of the LHC, the readout electronics of the liquid-argon (LAr) calorimeters of ATLAS are being prepared for high luminosity operation expecting a pileup of up to 200 simultaneous proton–proton interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases the difficulty of energy reconstruction by the calorimeter detector. Real-time processing of digitized pulses sampled at 40 MHz is performed using field-programmable gate arrays (FPGAs). To cope with the signal pileup, new machine learning approaches are explored: convolutional and recurrent neural networks outperform the optimal signal filter currently used, both in assignment of the reconstructed energy to the correct proton bunch crossing and in energy resolution. The improvements concern in particular energies derived from overlapping pulses. Since the implementation of the neural networks targets an FPGA, the number of parameters and the mathematical operations need to be well controlled. The trained neural network structures are converted into FPGA firmware using automated implementations in hardware description language and high-level synthesis tools. Very good agreement between neural network implementations in FPGA and software based calculations is observed. The prototype implementations on an Intel Stratix-10 FPGA reach maximum operation frequencies of 344–640 MHz. Applying time-division multiplexing allows the processing of 390–576 calorimeter channels by one FPGA for the most resource-efficient networks. Moreover, the latency achieved is about 200 ns. These performance parameters show that a neural-network based energy reconstruction can be considered for the processing of the ATLAS LAr calorimeter signals during the high-luminosity phase of the LHC

    Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

    No full text
    The Phase-II upgrade of the LHC will increase its instantaneous luminosity by a factor of 7 leading to the High Luminosity LHC (HL-LHC). At the HL-LHC, the number of proton-proton collisions in one bunch crossing (called pileup) increases significantly, putting more stringent requirements on the LHC detectors electronics and real-time data processing capabilities. The ATLAS Liquid Argon (LAr) calorimeter measures the energy of particles produced in LHC collisions. This calorimeter has also trigger capabilities to identify interesting events. In order to enhance the ATLAS detector physics discovery potential, in the blurred environment created by the pileup, an excellent resolution of the deposited energy and an accurate detection of the deposited time is crucial. The computation of the deposited energy is performed in real-time using dedicated data acquisition electronic boards based on FPGAs. FPGAs are chosen for their capacity to treat large amount of data with very low latency. The computation of the deposited energy is currently done using optimal filtering algorithms that assume a nominal pulse shape of the electronic signal. These filter algorithms are adapted to the ideal situation with very limited pileup and no timing overlap of the electronic pulses in the detector. However, with the increased luminosity and pileup, the performance of the filter algorithms decreases significantly and no further extension nor tuning of these algorithms could recover the lost performance. The back-end electronic boards for the Phase-II upgrade of the LAr calorimeter will use the next high-end generation of INTEL FPGAs with increased processing power and memory. This is a unique opportunity to develop the necessary tools, enabling the use of more complex algorithms on these boards. We developed several neural networks (NNs) with significant performance improvements with respect to the optimal filtering algorithms. The main challenge is to efficiently implement these NNs into the dedicated data acquisition electronics. Special effort was dedicated to minimising the needed computational power while optimising the NNs architectures. Five NN algorithms based on CNN, RNN, and LSTM architectures will be presented. The improvement of the energy resolution and the accuracy on the deposited time compared to the legacy filter algorithms, especially for overlapping pulses, will be discussed. The implementation of these networks in firmware will be shown. Two implementation categories in VHDL and Quartus HLS code are considered. The implementation results on Stratix 10 INTEL FPGAs, including the resource usage, the latency, and operation frequency will be reported. Approximations for the firmware implementations, including the use of fixed-point precision arithmetic and lookup tables for activation functions, will be discussed. Implementations including time multiplexing to reduce resource usage will be presented. We will show that two of these NNs implementations are viable solutions that fit the stringent data processing requirements on the latency (O(100ns)) and bandwidth (O(1Tb/s) per FPGA) needed for the ATLAS detector operation

    Applications and Techniques for Fast Machine Learning in Science

    No full text
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.ISSN:2624-909

    Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design.

    No full text
    Current standard of care for metastatic castration-sensitive prostate cancer supplements androgen deprivation therapy with either docetaxel, second-generation hormonal therapy, or radiotherapy. We aimed to evaluate the efficacy and safety of abiraterone plus prednisone, with or without radiotherapy, in addition to standard of care. We conducted an open-label, randomised, phase 3 study with a 2 × 2 factorial design (PEACE-1) at 77 hospitals across Belgium, France, Ireland, Italy, Romania, Spain, and Switzerland. Eligible patients were male, aged 18 years or older, with histologically confirmed or cytologically confirmed de novo metastatic prostate adenocarcinoma, and an Eastern Cooperative Oncology Group performance status of 0-1 (or 2 due to bone pain). Participants were randomly assigned (1:1:1:1) to standard of care (androgen deprivation therapy alone or with intravenous docetaxel 75 mg/m once every 3 weeks), standard of care plus radiotherapy, standard of care plus abiraterone (oral 1000 mg abiraterone once daily plus oral 5 mg prednisone twice daily), or standard of care plus radiotherapy plus abiraterone. Neither the investigators nor the patients were masked to treatment allocation. The coprimary endpoints were radiographic progression-free survival and overall survival. Abiraterone efficacy was first assessed in the overall population and then in the population who received androgen deprivation therapy with docetaxel as standard of care (population of interest). This study is ongoing and is registered with ClinicalTrials.gov, NCT01957436. Between Nov 27, 2013, and Dec 20, 2018, 1173 patients were enrolled (one patient subsequently withdrew consent for analysis of his data) and assigned to receive standard of care (n=296), standard of care plus radiotherapy (n=293), standard of care plus abiraterone (n=292), or standard of care plus radiotherapy plus abiraterone (n=291). Median follow-up was 3·5 years (IQR 2·8-4·6) for radiographic progression-free survival and 4·4 years (3·5-5·4) for overall survival. Adjusted Cox regression modelling revealed no interaction between abiraterone and radiotherapy, enabling the pooled analysis of abiraterone efficacy. In the overall population, patients assigned to receive abiraterone (n=583) had longer radiographic progression-free survival (hazard ratio [HR] 0·54, 99·9% CI 0·41-0·71; p<0·0001) and overall survival (0·82, 95·1% CI 0·69-0·98; p=0·030) than patients who did not receive abiraterone (n=589). In the androgen deprivation therapy with docetaxel population (n=355 in both with abiraterone and without abiraterone groups), the HRs were consistent (radiographic progression-free survival 0·50, 99·9% CI 0·34-0·71; p<0·0001; overall survival 0·75, 95·1% CI 0·59-0·95; p=0·017). In the androgen deprivation therapy with docetaxel population, grade 3 or worse adverse events occurred in 217 (63%) of 347 patients who received abiraterone and 181 (52%) of 350 who did not; hypertension had the largest difference in occurrence (76 [22%] patients and 45 [13%], respectively). Addition of abiraterone to androgen deprivation therapy plus docetaxel did not increase the rates of neutropenia, febrile neutropenia, fatigue, or neuropathy compared with androgen deprivation therapy plus docetaxel alone. Combining androgen deprivation therapy, docetaxel, and abiraterone in de novo metastatic castration-sensitive prostate cancer improved overall survival and radiographic progression-free survival with a modest increase in toxicity, mostly hypertension. This triplet therapy could become a standard of care for these patients. Janssen-Cilag, Ipsen, Sanofi, and the French Government
    corecore